Infinite series expansions forp-adic numbers
نویسندگان
چکیده
منابع مشابه
Complementary Bell Numbers and p-adic Series
In this article, we generalize a result of Murty on the non-vanishing of complementary Bell numbers and irrationality of a p-adic series. This generalization leads to a sequence of polynomials. We partially answer the question of existence of an integral zero of those polynomials.
متن کاملTranscendental numbers having explicit g-adic and Jacobi-Perron expansions
© Université Bordeaux 1, 1992, tous droits réservés. L’accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier do...
متن کاملOn Series Expansions of Capparelli’s Infinite Product
Using Lie theory, Stefano Capparelli conjectured an interesting Rogers-Ramanujan type partition identity in his 1988 Rutgers Ph.D. thesis. The first proof was given by George Andrews, using combinatorial methods. Later, Capparelli was able to provide a Lie theoretic proof. Most combinatorial Rogers-Ramanujan type identities (e.g. the Göllnitz-Gordon identities, Gordon’s combinatorial generaliza...
متن کاملComputable p–adic Numbers
In the present work the notion of the computable (primitive recursive, polynomially time computable) p–adic number is introduced and studied. Basic properties of these numbers and the set of indices representing them are established and it is proved that the above defined fields are p–adically closed. Using the notion of a notation system introduced by Y. Moschovakis an abstract characterizatio...
متن کاملOn alpha-adic expansions in Pisot bases
We study α-adic expansions of numbers, that is to say, left infinite representations of numbers in the positional numeration system with the base α, where α is an algebraic conjugate of a Pisot number β. Based on a result of Bertrand and Schmidt, we prove that a number belongs to Q(α) if and only if it has an eventually periodic α-expansion. Then we consider α-adic expansions of elements of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 1992
ISSN: 0022-314X
DOI: 10.1016/0022-314x(92)90113-4