Infinite series expansions forp-adic numbers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complementary Bell Numbers and p-adic Series

In this article, we generalize a result of Murty on the non-vanishing of complementary Bell numbers and irrationality of a p-adic series. This generalization leads to a sequence of polynomials. We partially answer the question of existence of an integral zero of those polynomials.

متن کامل

Transcendental numbers having explicit g-adic and Jacobi-Perron expansions

© Université Bordeaux 1, 1992, tous droits réservés. L’accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier do...

متن کامل

On Series Expansions of Capparelli’s Infinite Product

Using Lie theory, Stefano Capparelli conjectured an interesting Rogers-Ramanujan type partition identity in his 1988 Rutgers Ph.D. thesis. The first proof was given by George Andrews, using combinatorial methods. Later, Capparelli was able to provide a Lie theoretic proof. Most combinatorial Rogers-Ramanujan type identities (e.g. the Göllnitz-Gordon identities, Gordon’s combinatorial generaliza...

متن کامل

Computable p–adic Numbers

In the present work the notion of the computable (primitive recursive, polynomially time computable) p–adic number is introduced and studied. Basic properties of these numbers and the set of indices representing them are established and it is proved that the above defined fields are p–adically closed. Using the notion of a notation system introduced by Y. Moschovakis an abstract characterizatio...

متن کامل

On alpha-adic expansions in Pisot bases

We study α-adic expansions of numbers, that is to say, left infinite representations of numbers in the positional numeration system with the base α, where α is an algebraic conjugate of a Pisot number β. Based on a result of Bertrand and Schmidt, we prove that a number belongs to Q(α) if and only if it has an eventually periodic α-expansion. Then we consider α-adic expansions of elements of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 1992

ISSN: 0022-314X

DOI: 10.1016/0022-314x(92)90113-4